Chapter 2 Reasoning and Proofs

- 2.1 Conditional Statements
- 2.2 Inductive and Deductive Reasoning
- 2.3 Postulates and Diagrams
- 2.4 Algebraic Reasoning
- 2.5 Proving Statements about Segments and Angles
- 2.6 Proving Geometric Relationships

If a snake has a red, yellow, and black pattern, **then** it is a King Snake.

Conditional statement - a logical statement that has two parts, a *hypothesis* (p) and a *conclusion* (q).

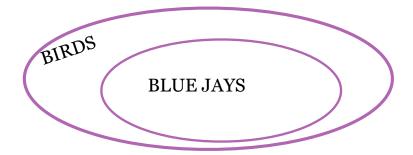
If p, then q.

or

 $p \longrightarrow q$

For example: If an animal is a bird, then it has feathers.

hypothesis


conclusion

Examples:

- If today is Thanksgiving Day, then today is Thursday.
- A number is a rational number if it is an integer.

Write a conditional:

- An obtuse triangle has exactly one obtuse angle.
- Write a conditional for the Venn diagram:

A **conditional statement** has a truth value of either true (T) or false (F).

For example:

- If the animal is a bluejay, then it is a bird.
- If today is Friday, then I win the lottery.
- If I own a spaceship, then the sky is red.

Hypothesis p	Conclusion q	Conditional p -> q
T	T	T
F	T	T
T	F	F
F	F	T

Vocabulary

Negation - the opposite of the original statement.

p becomes ~p or "not p"

an animal is a bird

p

an animal is not a bird

ď

- Conditional: If p then q.
- If two angles are congruent, then they are acute.
- Converse: exchanging the hypothesis and conclusion.

If q then p or
$$q \longrightarrow p$$

• If two angles are acute, then they are congruent.

- Conditional: If p then q.
- If two angles are congruent, then they are acute.
 - Inverse: negate the hypothesis and conclusion.

If
$$\sim p$$
 then $\sim q$ or $\sim p \longrightarrow \sim q$

• If two angles are not congruent, then they are not acute.

- Conditional: If p then q.
- If two angles are congruent, then they are acute.
 - Contrapositive: negate the hypothesis and conclusion, then exchange them.

If
$$\sim q$$
 then $\sim p$ or $\sim q \longrightarrow \sim p$

• If two angles are not acute, then they are not congruent.

• Logically equivalent statements: conditional statements that have the same truth value.

		Statement	Example	Truth Value
	-	Conditional	If two angles are both 45°, then they are congruent.	T
	—	Converse	If two angles are congruent, then they are both 45 $^{\circ}$.	F
	-	Inverse	If two angles are not both 45°, then they are not congruent.	F
	-	Contra- positive	If two angles are not congruent, then they are not both 45° .	T

Equivalent

Example:

Let *p* be "you are a guitar player" and let *q* be "you are a musician." Write the following:

- 1. the conditional statement
- 2. the converse
- 3. the inverse
- 4. the contrapositive

- **Biconditional Statement**: a statement that can be written in the form "**p** if and only if **q**."
- This form means **both** the **conditional** statement and its **converse**.

"if \boldsymbol{p} then \boldsymbol{q} " and "if \boldsymbol{q} then \boldsymbol{p} "

- Example: "An angle is obtuse **if and only if** its measure is greater than 90 degrees and less than 180 degrees."
- Conditional:
- Converse:

- **Biconditional Statement**: a statement that can be written in the form "**p** if and only if **q**."
- This form means **both** the **conditional** statement and its **converse**.

"if \boldsymbol{p} then \boldsymbol{q} " and "if \boldsymbol{q} then \boldsymbol{p} "

- Example: "A solution is neutral \longleftrightarrow its pH is 7."
- Conditional:
- Converse: